Начнём с конца. Перпендикуляр из точки В на плоскость АСМ - это катет треугольника ВС. Его можно найти, зная длину другого катета (АС = 18) и угол А = 30 градусов. Его синус = 1/2, косинус = √3/2, а значит стороны треугольника:
АВ = AC/cosA = 18/(√3/2) = 36/√3
ВС = sinA*AB = 1/2 * (36/√3) = 18/√3
Второе требуемое мы нашли. Теперь к первому.
Пусть перпендикуляр из точки М к прямой АВ попадает на эту прямую в точке Н. Тогда СН - это высота треугольника АВС (по мне очевидно, но если надо, можно доказать). Найдём СН. Для этого рассмотрим получившийся прямоугольный треугольник АСН, в нём АС - это гипотенуза, значит:
СН = AC*sinA = 18 * 1/2 = 9
Теперь рассмотрим треугольник МСН. Он тоже прямоугольный и нам надо найти его гипотенузу:
МН² = СМ² + СН² = 12² + 9² = 144 + 81 = 225 = 15²
МН = 15
Вот собственно и всё. Не забывайте про единицы измерения, как я, и спрашивайте, если непонятно.
Рассмотрим треугольникACD иADB
В них:1)AB общая
2)AC=AD(по условию)
3)уголCAB=углуDAB (по условию)
Значит треугольник ACB=треугольнику ADBпо 2 признаку.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой:
∠ABD = ∠CBD,
∠MDB = ∠NDB так как DB - биссектриса угла <span>МDN,
BD - общая сторона для треугольников </span><span>MDB и NDB, ⇒
Δ</span><span>MDB = ΔNDB по стороне и двум прилежащим к ней углам.
Из равенства треугольников следует, что
BM = BN.
АМ = АВ - ВМ
CN = CB - BN
AB = CB как стороны равнобедренного треугольника АВС,
значит
AM = CN,
</span>
тк уг МНП =117о, то МНА =180о-117о=63о как смежный,
рассмотрим тр-к АМН равнобедренный по условию. знчт МНА=АМН=63о
пусть МН II ВС и АВ - секущая , тогда угАВС=угВМО как внутренний разнострнние, и угВМО=угАМН как вертикальные . УгАМН=угВМО=угАВС=63о - утверждение верно, следовательно верно и МН II ВС
Рассмотрим треугольники Abd и Bdc
Ed-высота, значит Ed перпендикулярно Ac.
Bd- общая
Ad=Dc- по условию
Треугольник Abd=Bdc (по равенству двух катетов)