В прямоугольном треугольнике АРК - гипотенуза РК=2 см, угол АКР=30 град.
Катет, лежащий против угла в 30 градусов равен половине гипотенузы, сл-но АР=1 см.
По условию КД=АР, тогда ВР=АК, т.е. сторона АВ=АР+ВР=1+1,5=2,5 см
Периметр квадрата = 4*АВ=4*2,5=10 см
Пусть ΔABC с основанием AC=12дм и ∠B=120° - осевое сечение конуса. Так как треугольник равнобедренный, то ∠A=∠C=(180-120):2=30°.
Проведем высоту BH. AH=HC=12/2=6 дм - радиус основания конуса
Хорошая задача! Ребра наклонены под одним углом, значит вершина проектируется в центр описанной окружности. Находим радиус описанной окружноси.2R=a/sin 150
2R=a/sin 30
R=a
Ребра наклонены под углом в 45 гр., значит высота пирамиды=a (равнобедр. треуг.)
S=a^2sina
a=p/4=80/4=20
s=20*20*sin30
s=400*0.5=200
Треугольник <u>АМК равнобедренный по условию</u>, следовательно, ∠<span>МАК=</span>∠<span><span>АМК ( свойство равнобедренного треугольника).
</span>
В ∆ АВС </span>∠<span>АСВ=</span>∠<span>АМК, значит </span><span>∠АСВ=∠</span><span>ВАС .
<em>Если в треугольнике два угла равны, этот треугольник равнобедренный</em>. </span>⇒ <u>∆ АВС- равнобедренный.</u>
---------
Можно указать, что углы МК и АСВ соответственные при пересечении прямых КМ и ВС секущей АС. <em>Если при пересечении двух прямых секущей соответственные углы равны,, то эти прямые параллельны</em>. Но для решения это не пригодится.