Угол ABC равен 160 градусам, лучи BK и BM проходят между сторогами этого угла и перпендикулярны им. найдите угол MBK
Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.
Опустим из вершины B высоту BH на основание AC.
Рассмотрим треугольники ABH и BCH.
Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.
Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.
Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.
Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.
Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.
Следовательно, BH является биссектрисой угла ABC.
<u><em>Треугольник ВОС - равнобедренный ( равные стороны - радиусы окружности)</em></u>
<u><em /></u>
Задача имеет два варианта решения.
1)угол СОВ больший.
Пусть угол СВО=х
Тогда ВОС=х+36
Сумма углов треугольника 180 градусов.
2х+х+36=180
3х= 144
х=48
Угол СВО=48 градусов
угол BOC=48+36=84
2)угол СОВ - меньший
Пусть он будет х
Тогда углы при основании ВС=х+36
х+2(х+36)=180
3х+72=180
3х=108
х=36
Угол ВОС=36
Угол СВО=36+36=72