В прямоугольном треугольнике АТВ (АТВ = угол DTB =90°, так как опирается на диаметр DB SinA = ВТ/АВ = 9√3/12√3= 3/4 = 0,75. По таблице синусов находим, что это угол 48,6°
В треугольнике DTO угол TDO=DTO (т.к. DTO - равнобедренный OD=OT =R) и = ABD (т.к. DAB - равнобедренный - половина ромба), а тогда угол TOD = DAB = 48,6°.
Площадь сегмента DT по формуле Sdt = R²/2(π*A°/180° - SinA) = 1/2*8,48²(3,14*48,6/180 -0,75) ≈ 3,5. Но таких сегментов четыре, значит площадь части круга, расположенного вне ромба равна 3,5*4 = 14.
100=64+x^2
где x - 1/2 основания
x=6
тогда основание равно 6*2=12
Без рисунка. ( но будем считать что ABCD - основание пирамиды, а S-вершина пирамиды. Для начала найдём чему равна диагональ основания пирамиды по теореме Пифагора:
AC = корень из ((6корней из двух в квадрате) + (6корней из двух в квадрате)) = корень из 144 = 12.
Далее из вершины S провести надо высоту к плоскости ABCD. Обозначим высоту как SO. В правильной пирамиде высота будет лежать на пересечениях диагоналей основания пирамиды. Следовательно AО равна 1/2AC = 6. Потом найдём высоту по теореме Пифагора:
SO=корень из (10 в квадрате) - (6 корней из двух) возвести вквадрат))=корню из 36= 6
Теперь можно найти объем. Объем пирамиды =1/3 S(основания) * H(высота)= 1/3*6корней из 2* 6корней из двух *6=144см^3...
Ответ:
Центральный угол, вписанный угол.
Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. =>
АС=ВС=20:2=10
ОА=ОВ - радиусы. => ∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45° => ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см