Пусть имеем две окружности с центрами O и Q, AB- касательная, которая касается окружностей в т. A и B, BO=7, AQ=2, OQ=13. Из точки Q на BO проведем перпендикуляр QK, тогда ABKQ- прямоугольник, так как углы A и B - прямые по условию, а угол K=90 градусов по построению, тогда AQ=BK и AB=QK
OK=OB-BK
OK=7-2
OK=5
Из прямоугольного треугольника QKO по теореме Пифагора
(QK)^2=(QO)^2-(OK)^2=(13)^2-5^2=169-25=144
QK=12
а значит и AB длина общей касательной равна 12
1. Чертим окружность с центром О и проводим диаметр EOF
2. Ищем вершины квадрата (BC) на окружности и на диаметре (AD)
2.1. Так как в квадрате все стороны равны, то они должны отсекать от полуокружности дуги одинаковой длины, т.е. 180/3=60гр. Используем метод для построения вписанного шестиугольника и отмечаем точки на полуокружности циркулем. Соеденим обе точки, получим сторону ВС, из этих же точек проведем перпендикуляр к диаметру, получим остальные стороны квадрата.
3. Имеем равносторонний треугольник ОCF с проведенной в нем высотой (медианой, биссектрисой) СD, делаем вывод, что OD=DF; OD=AO=OF/2=0,5; значит сторона квадрата = 1
4. OBC - равносторонний со стороной = 1; r=√3/6
Пусть 1 часть -х
угол А-3х
угол В-4х
угол С-8х
Сумма всех углов треугольника =180°
3х+4х+8х=180
15х=180
х=180:15
х=12
одна часть 12
Угол А=12*3=36
Угол В=12*4=48
Угол С=12*8=96
2 точка 7 -1равравравравпаааааааааааааааа