а) Площадь конуса S=Pi*R*L, где R-радиус, L-длина образующей
Обозначим пирамиду АВСД. Д вершина. Проведём высоту основания ВЕ из точки В на АС и высоту пирамиды ДЕ. Точка О лежит на ВЕ и является центром вписанной окружности правильного треугольника(основание). Обозначим сторону основания а, а боковое ребро в. Тогда по условию а=в/3. ЕО=r= (корень из 3/6)*а=в/6корней из 3. Апофема ДЕ=(корень из 3)/2*в. Угол ДЕВ будет линейным углом искомого двугранного угла(АС ребро двугранного угла, ВЕ перпендикуляр к ребру). Тогда cosДЕО=ЕО/ДЕ=(в/6 корней из 3):(корень из 3/2)*в=0,11. По таблице находим угол равен примерно 84 градуса.
DB = AB - AD = 26 - 8 = 18 см
СD = √(AD·DB) = √(8·18) = 12 см
<em>Ответ : 12 см</em>
Угол А треугольника АВС - 1, угол В - 2. Внешний угол при вершине А биссектриса делит на 3+3, а внешний угол при вершине В биссектриса делит на 4+4.
1+2+28=180 1+2 = 152.
3+3+1=180 как смежные
4+4+2 =1 80 как смежные
складываем эти уравнения
3+3+1+4+4+2 = 360, но 1+2 = 152, значит 3+3+4+4 +152 = 360, 3+3+4+4 = 208 3+4=104.
В треугольнике АДВ сумма двух углов 3 и 4 равна 104.
Значит третий угол ВДА равен 180-104 = 76