Угол между высотами параллелограмма, проведенными из вершины острого угла, равен тупому углу параллелограмма.
Дано: ABCD — параллелограмм,
∠BCD — острый,
CK и CF — высоты параллелограмма.
Доказать:
∠KCF=∠ABC
Доказательство:
1) ∠ABC+∠KBC=180º (как смежные).
Следовательно, ∠KBC=180º-∠ABC.
2) Так как CF — высота параллелограмма ABCD, то она перпендикулярна к прямым, содержащим стороны AD и BC. Поэтому ∠BCF=90º.
3) Рассмотрим треугольник KBC — прямоугольный (∠KBC=90º, так как CK- высота параллелограмма ABCD).
Так как сумма острых углов прямоугольного треугольника равна 90º, то
∠KCB=90º-∠KBC=90º-(180º-∠ABC)=90º-180º+∠ABC=∠ABC-90º.
4) ∠KCF=∠KCB+∠BCF=∠ABC-90º+90º=∠ABC.
Что и требовалось доказать.
В неправельный ответ.......,...................................................................
∆ АВС - прямоугольный, и СD – его высота.
АВ=АD+DB=20 м.
<span><em>Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу.</em>
</span>CD=√18•2=√9=3 м.
<span><em>Катет равен среднему геометрическому его проекции на гипотенузу и гипотенузы.</em></span><em> </em>
ВС=√(20•18)=6√10 м
AC=√(20•2)=2√10 м
---------
Добавлю, что высота из прямого угла к гипотенузе делит треугольник на подобные. Поэтому решать можно такие задачи через отношение сходственных сторон подобных треугольников BCD и ACD:
<em>ВD:CD</em>=CD:AD Отсюда 2•18=x² и тогда ⇒<em>x=√36=6</em>
После того, как найдена высота CD, катеты ∆ АВС можно найти по т.Пифагора. ВС=√(BD²+CD²)=√(324+36)=6√10 м
AC=√ (AD²+CD²)=√(36+4)=2√10 м
для треугольника нужно применять тригонометрические функции. синус - это отношение противолежащего катета на гипотенузу, а косинус - это отношение прилежащего катета на гипотенузу