100-40=60
100+60=160
УголРОК равен 160 градусов
Нарисуй ромб и проведи в нем диагонали. они разобьют ромб на 4 равных прямоугольных треугольника. рассмотрим один из них. пусть меньший угол в треугольнике равен х, тогда второй угол будет х+40*. так как диагонали ромба являются биссектрисами его углов, то получим в ромбе углв равные: 2х, 2(х+40), 2х, 2(х+40). по теореме о сумме углов четырехугольника составим уравнение:
2х+2х+2(х+40)+2(х+40)=360
2х+2х+2х+80+2х+80=360
8х+160=360
8х=200
х=25*
значит, меньший угол ромба будет 2*25=50 градусов
найдем второй угол:
2(25+40)=130* больший угол ромба.
ответ: углы ромба- два угла по 50*, два угла по 130*
Ответ:
Проведи например высоту CH
В параллелограмме противоположные стороны и улы равны
Значит AC=PD=8
AP=8+2=10
Треугольник CHA прямоугольный
<A=<D=60°
<ACH=90°-60°=30°
На против угла 30° лежит катет равный половине гипотенузы
AH=8÷2=4
CH=√8^2-4^2
CH=√48=4√3
S=CH×AP
S=4√3×10=40√3
Объяснение:
Рассмотрим ΔВДС и ΔВЕА. Они подобны по первому признаку подобия (по двум углам).
<u>В ΔВДС </u>известна гипотенуза ВС=13 и можно найти стороны ВД и ДС.
ВД=АВ/2=5 <em>(т.к. высота к основанию равнобедренного тр-ка является и его медианой)</em>
ДС=√(ВС²-ВД²) <em>(как катет в прямоугольном тр-ке) </em>
ДС=√(13²-5²)=√144=12
Теперь рассмотрим <u>ΔВЕА.</u>
В нем известна гипотенуза АВ=10.
Найдем коэффициент подобия треугольников. к=АВ/ВС=10/13.
По свойству подобия треугольников найдем больший катет АЕ=ДС·к=12·10/13=120/13=9
Ответ: АЕ=9