Ответ:
Объяснение:
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
=(1/13*26/1)-(11/2*26/1)=сокращает первое на 13 второе на 2 ==2/1-143/2=4/2-143/2=-139/2=-69 1/2=-69.5
y'=-[x/sin^x+ctgx]/x^2=-[2x+sin2x]/2x^2sin^2x
2x^2+5x+56=x^2-8x+16
x^2+13x+40=0
D=169-160=3^2
x=(-13±3)/2
x=-8;-5
Решение
№ 104.
(tg³x - tg³y) / [(1 + tgxtgy)(tg²x + tgxtgy + tg²y)] =
= [(tgx - tgy)*(tg²x + tgxtgy + tg²y)] / [(1 + tgxtgy)(tg²x + tgxtgy + tg²y)] =
= (tgx - tgy) / (1 + tgxtgy) = tg(x - y)
№105.
(cos⁴2a - sin⁴2a) / (cos4a) - (cos2a - sin2a)² =
= [(cos²2a - sin²2a) * (cos²2a + sin²2a)] / (cos4a) - (cos²2a - 2sin2acos2a + sin²2a) = (cos²2a - sin²2a) / cos4a - 1 + 2sin2acos2a =
= cos4a / cos4a -1 + sin4a = 1 - 1 + sin4a = sin4a
№ 106.
[ 1/(1 - tgx) - 1/(1 + tgx)] * (cos²x - sin²x) =
= (1 + tgx - 1 + tgx)*cos2x / (1 - tg²x) =
= [2tgx*(1 - tg²x)] (1 - tg²x)(1 + tg²x)] = 2tgx / (1 + tg²x) = sin2x