Пусть АВСD -данный параллелограмм. Тогда АС и ВD - его диагонали. АС=20, ВD=12. Угол АОВ=60⁰. О-точка пересечения диагоналей, поэтому АО=АС/2=10, ВО=ВD/2=6. Найти АВ и ВС.
Из треугольника АОВ по теореме косинусов найдем АВ²=АО²+ВО²-2АО*ВО*соs60⁰=100+36-2*10*6*0,5=136-60=76
AB=корень из 76=2 корень из 19.
Из треугольника ВОС по теореме косинусов найдем ВС²=СО²+ВО²-2СО*ВО*соs120⁰=
100+36+2*10*6*0,5=136+60=196=14
ВС=14
Решение задания приложено
(2-х)(3+4х)≥-4х²-3х+22
6+8х-3х-4х²≥-4х²-3х+22
8х-3х-4х²+4х²+3х≥22-6
8х≥16
х≥2
B1=-0,5 и d по формуле равно 1,5 так как bn+1=bn+1,5
то есть b7=-0,5+1,5(7-1)=8,5
Если медиана равна половине противоположной стороны, то противоположная сторона=диаметр описанной окружности и опирающийся на диаметр угол прямой,
отсюда ясно, что если медиана больше, то угол острый,
если меньше, то тупой