Всё просто. Угол АОС-центральный. И как мы знаем, он в 2 раза больше дуги, на которую опирается. Значит, 40*2=80 градусов.
8) 180-130=50°-A; 60+50+C=180°
C=70°;
12) 180-135=45°-A; A=B потому что равнобедренные(B=45°)
D=90°(полностью), если её разделить тогда будет равен к 45°
<span>Площадь треугольника равна половине произведения высоты на сторону, к которой проведена. </span>
<em>S=a•h:2</em>
•<em>Если высоты двух треугольников равны, то их площади относятся как основания</em>.
<span>Высота ∆ ADC и ∆ ABC общая. </span>
<u>Подробно.</u>
S(ABD):S(ABC)=AD:AC
<span>Точка D по условию делит АС в отношении 1:5. </span>
<span>Примем AD=a, тогда DC=5a. </span>
<span>AC=а+5а=6a </span>
S(ABD):A(ABC)=1/6
S(ABC)=36
S(ABD)=36:6=6 см²
<span>-----------</span>
<span> Площадь треугольника можно найти и по формуле </span>
<em>S=a•b•sinα:2</em>, где a и b стороны треугольника, α - угол между ними.
<span>Угол А общий для ∆ABD и ∆ABC, поэтому </span>
<span>S (ABD):S (ABC)=AB•AD:AB•AC, т.е. получается то же отношение AD:AC, равное для данного треугольника 1/6.</span>
Я точно не знаю ну думаю,что бы найти объём нужно все его стороны умножить то есть 4*3*2*3*2=144
В прямоугольном треугольнике АТВ (АТВ = угол DTB =90°, так как опирается на диаметр DB SinA = ВТ/АВ = 9√3/12√3= 3/4 = 0,75. По таблице синусов находим, что это угол 48,6°
В треугольнике DTO угол TDO=DTO (т.к. DTO - равнобедренный OD=OT =R) и = ABD (т.к. DAB - равнобедренный - половина ромба), а тогда угол TOD = DAB = 48,6°.
Площадь сегмента DT по формуле Sdt = R²/2(π*A°/180° - SinA) = 1/2*8,48²(3,14*48,6/180 -0,75) ≈ 3,5. Но таких сегментов четыре, значит площадь части круга, расположенного вне ромба равна 3,5*4 = 14.