А) возведем обе части в квадрат, получим
5-2х≤1-2х+х², упростим и перенесем все вправо
х²-4≥0, представим в виде произведения множителей
(х-2)(х+2)≥0
х≥2 или х≤2
х≥-2 х≤-2
х∈(2;+∞) х∈(-∞;-2)
Ответ (2;+∞)U(-∞;-2) U-знак объединение
б) возведем обе части в квадрат
3-х≥25+30х+9х²
9х²+31х-22≤0 найдем корни квадратного уравнения
9х²+31х-22=0
D=31²-4 *9*22=169 √D=13
х₁=(-31+13)/18=-1 х₂=(-31+13)/18=-44/18, получим
9(х+44/18)(х+1)≤0
(9х+11)(х+1)≤0
х≤-11/9 или х≥-11/9
х≥-1 х≤-1
х пустое множество х∈(-11/9; -1)
3^x=a
2a²-17a-9=0
D=289+72=361
a1=(17-19)/4=-1/2⇒3^x=-1/2 нет решения
а2=(17+19)/4=9⇒3^x=9⇒x=2
679 и 485 НОК - 3395 НОД - 97
1 998 и 111 НОК - 1 998 НОД - 111
999 и 666 НОК - 1 998 НОД - 333
1 999 и 2 000 НОК - 3 998 000 НОД - 1
25 и 27 НОК - 675 НОД - 1
Т.к. прямая b параллельна плоскости α, следовательно прямая b параллельна какой-нибудь прямой, лежащей в этой плоскости (допустим, прямой d)
Т.к. прямая b параллельна прямой а, и параллельна прямой d, то прямая а параллельна прямой d по теореме о параллельности трех прямых.
Т.к. прямая а параллельна прямой d, а d принадлежит прямой α, то прямая а параллельна плоскости α.
Ч.т.д.