AE : ED = 6 : 18 = 1 : 3
BE : EC = 12 : 36 = 1 : 3
∠AEB = ∠DEC как вертикальные, тогда
ΔАЕВ подобен ΔDECпо двум пропорциональным сторонам и углу между ними.
Коэффициент подобия k = 1/3.
Площади подобных треугольников относятся как квадрат коэффициента подобия:
S₁ : S₂ = k² = 1 : 9
Ні, не може.
Припустимо, що може бути таки варіант для АВСD чотирикутника<span>, при якому три вершини його А, В і </span>D<span> належать площині </span>α, а вершина С - ні. Проведемо діагоналі АС і ВD<span>. Діагоналі перетинаються в точці О. Оскільки </span>B∈α<span> і </span>D∈α, то ВD належить α<span>, а тому і точка О належить </span>α<span>. Оскільки А</span>∈α<span> і О</span>∈α<span>, то АО належить </span>α<span>. Оскільки точка С належить прямій АО, а пряма АО належить площині </span>α<span>, то і точка С належить площині </span>α. Тому наше припущення не вірне. Не можуть тільки три вершини чотирикутника АВСD <span>належати площині </span>α. Всі чотири лежать в α.
Сечение шара плоскостью всегда круг. Причем радиус сечения, радиус шара и расстояние от центра шара до плоскости сечения образуют прямоугольный треугольник.
В данном случае сечением шара плоскостью треугольника будет вписанный в треугольник круг. Радиус его находится из теоремы Пифагора
r^2 = 3^2 - 2^2 = 5;
Теперь по известному радиусу вписанной окружности надо найти сторону. Тут куча способов, вот один из них : площадь правильного треугольника равна
S = (1/2)*a^2*sin(60) = (1/2)*(3*a)*r;
Отсюда
a = 3*r/sin(60) = 3*корень(5)/(корень(3)/2);
а = 2*корень(15);
По геометрии за какой класс?
Тяжело блин блин бы не было в