1) т.к. у ромба противоположные углы равны и общая сумма углов равна 360°, обозначим первый угол как x(меньший), следовательно второй x+20° =>
2*x+2*(x+20°)=360°
2*x+2*x+40°=360°
4*x=320°
x=80°
2) в ромьбе меньшей диагонали соответствует больший урот => искомый угол = x + 20° = 100°
Ответ:100°
1) Если боковые грани наклонены к основанию под углами α=60 и β=45 градусов, то боковое ребро как линия их пересечения наклонено под углом γ.
Подставим значения тангенсов углов : tg60 = √3, tg45 = 1.
tg γ = 1/√((1/3)+1) = √3/2 ≈ <span><span>0,866025.
Высота параллелепипеда равна длине L бокового ребра, умноженного на синус угла его наклона.
Синус угла можно выразить через тангенс:
sin </span></span>γ = tg γ /(1 + tg²γ) = √3/(2√1 + (3/4)) = √3/√7.<span>
Н = L*sin </span>γ = 7*√3/√7 = 7*
0,654654 = <span><span>4,582576 см.
Площадь основания равна So = 2*3 = 6 см</span></span>².
Объём равен V =So*H = 6*
4,582576 = <span>
27,49545 см</span>³.
Дано:
Окр ( О,r)
MN = 53 градуса, дуга AM = 157 Градусов.
Найти:
Вписанный угол ANM
Решение:
Т.к. вписанный угол равен половине дуги, на которую он опирается, тогда угол ANM = 157 : 2 =78.5 градусов.
Ромб АВСД, ВД=16, диагонали ромба перпендикулярны и в точке пересечения О делятся пополам, ВО=ДО=1/2ВД=16/2=8, ОК перпендикуляр на АВ=4*корень3, треугольник АВО прямоугольный, ОК высота, ВК=корень(ВО в квадрате-ОК в квадрате)=корень(64-48)=4, ОК в квадрате=ВК*АК, 48=4*АК, АК=48/4=12, АВ=4+12=16-сторона ромба, АО=1/2АС=корень(АВ в квадрате-ВО в квадрате)=корень(256-64)=корень192=8*корень3, АС=8*корень3*2=16*корень3