Призма АВСА1В1С1, АС=7, ВС=24, АВ=корень(АС в квадрате+ВС в квадрате)=корень(576+49)=25, АВ1-диагональ, уголВ1АВ=45, треугольник АВ1В прямоугольный равнобедренный, уголАВ1В=90-45=45, АВ=В1В=25 = высота призмы, площадьАА1С1С=АС*высота призмы=7*25=175
угол КМЕ= 90 гр.- угол Е= 60 гр.(сумма острых углов прямоуг треугольника равна 90 гр.)
Так МС - биссектриса, то угол КМС = углу СМЕ= 1/2 угла КМЕ.=30 гр.
уг. СМЕ = уг. МЕС, значит треуг. СМЕ равнобедренный с основанием МЕ, значит МС=СЕ=x см.
В прямоугольн. треуг. КМС угол КМС=30 гр., значит катет лежащий против него равен половине гипотенузы МС.
КС=1/2 МС= 1/2 x.
КЕ= КС +СЕ
12=x+1/2 x
12=1 1/2 x
12=3/2 x
x=12:(3/2)
x= 12*(2/3)
x=8/
МС=8
По Т. Виетта a=х+4 и -8=4х
Вводим их в систему, Выделяем х их обоих уравнений, приравниваем, и получаем а-4=-2
а=2
подставляем 2 в уравнение: х²-2х-8=0, через дискриминант ищем корни и получаем известное число 4, и второй корень -2
Ответ: а=2, х2=-2
Дано <span>cos C= 1/3. Тогда sin C = √(1-</span><span>cos² C</span>) = √(1-1/9) = √(8/9) =(2*√2)/3.
Боковая сторона а = b / (2*<span>cos C) = 3*√2 *3 / 2 = (9*√2) / 2.
Высота на основание Н = a*sin C = </span><span>(9*√2)*2*√2) (2</span>*3) = 6.
Из условия S = b*H/2 = a*h/2 находим h = b*H/a =(3√2*6*2) /9√2 = 4.
Здесь h - высота СК.