- 14аk +8ak +5аk = - 14ak+ 13аk = - ak
Подкоренное значение должно быть больше либо равно нулю. Т.к. корни умножаются, нужно учитывать условия для каждого. Составим систему неравенств и решим ее.
Пересечение двух условий дает решение .
Ответ: х∈[1; ∞).
Подробнее - на Znanija.com -
znanija.com/task/1249946#readmore
Y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2
На заданном нам интервале расположена только одна точка второго решения:
Т.к. наибольшее и наименьшее значение функции ищем на конечном промежутке, то необходимо проверить на экстремум и точки начала и конца промежутка:
Наибольше значение функции на заданном промежутке , а наименьшее