Дано: АВ и АС - касат., R=6 см, АВ=8 см.
Найти: ОА и АС.
Решение:
Согласно определению - отрезки касательных, проведенных из одной точки, равны, т.е. АС=АВ=8 см.
Рассм. треуг. АОС:
угол С=90 градусов (касательная к окружности перпендикулярна радиусу, проведенному в точку касания), ОС=R=6 см, АС= 8 см. По т. Пифагора найдем ОА:
Ответ: 8 см, 10 см.
Так как треугольники rtk и abc подобные, то:
Srtk:Sabc=RT²:AB²
16/Sabc=16/100
Sabc=16*100/16=100 ед²
Ответ: 100 ед².
Решаю в своем стиле, так что не суди)
№1
1)Sполн=Sбок+Sоснов
Sправ.бок.=1/2*Роснов*анафема
Sоснов=а(квадрат)
2)Рассим. треуг. SОК-прям.
угол. КО=30гр, следов. ОS=1/2 SК
SК=2*ОS=24
По т. Пифагора:
ОК(квадр)=SК(квадр)-ОS(квадр)=576-144=432
ОК=12кор.(3)
3) ОК=r
т.к. АВСД-квадрат, то r=a/2;
№2
1)Sбок=1\2*Росн*анафема
2) Рассм. треуг. SОС-прям.
угол SСО=45гр, угол ОSС=45, треуг. SОС-равноб. с основ SС, SО=ОС
по т. Пифагора:
SС(квадр)=SО(квадрат)+ОС(квадр)=2SО(квад)
16=2*SО(квв)
SО=ОС=2 корень(2)
3) ОС=R
R=а/(кор(2))
а=4
4) Роснов=16
5)
1. 2
2. 5
3. 3
4. Треугольники равнобедренные, значит - высота является биссектриссой. Треугольники равны, а значит угол B=углу B1=32*2=64 градуса. Ответ 2
5. основание - x, боковые стороны(каждая) 5x, т.к треугольник равнобедренный, x+5x+5x=99, x=9
9x5=45 обе боковые стороны, т.е ответ 5
треугольники AOD и BOC подобны по трем углам:
уг.AOD-общий
уг.OCB=уг.ODA (они прямые)
уг.OBC=уг.OAD (вытекает из предыдущих равенств)
Т.к. эти треугольники подобны, отношения соответсвующих сторон равны, т.е.
BC/AD=BO/AO
подставляем числа и находим BO:
2/5=BO/25
5*BO=2*25
5*BO=50
BO=10
Теперь находим отношение площадей:
S(BOC)/S(AOD)=(1/2*OC*BC)/(1/2*OD*AD)=OC*BC/OD*AD=OC/OD*BC/AD
BC/AD=2/5
так как отношение соответсвующих сторон равны OC/OD=BC/AD=2/5
S(BOC)/S(AOD)=2/5*2/5=4/25=0,16
Ответ: BO=10, отношение площадей = 0,16.