1) Выражение: x^2-3*x-18=0
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-3)^2-4*1*(-18)=9-4*(-18)=9-(-4*18)=9-(-72)=9+72=81;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√81-(-3))/(2*1)=(9-(-3))/2=(9+3)/2=12/2=6;x_2=(-√81-(-3))/(2*1)=(-9-(-3))/2=(-9+3)/2=-6/2=-3.
2) Выражение: x^2+x-12=0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-12)=1-4*(-12)=1-(-4*12)=1-(-48)=1+48=49;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√49-1)/(2*1)=(7-1)/2=6/2=3;x_2=(-√49-1)/(2*1)=(-7-1)/2=-8/2=-4.
3) Выражение: x^2-9*x+18=0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-9)^2-4*1*18=81-4*18=81-72=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-(-9))/(2*1)=(3-(-9))/2=(3+9)/2=12/2=6;x_2=(-√9-(-9))/(2*1)=(-3-(-9))/2=(-3+9)/2=6/2=3.
4) Выражение: x^2-8*x+7=0.
Квадратное уравнение, решаем относительно x: <span>Ищем дискриминант:</span>
D=(-8)^2-4*1*7=64-4*7=64-28=36;<span>Дискриминант больше 0, уравнение имеет 2 корня:</span>
x_1=(√36-(-8))/(2*1)=(6-(-8))/2=(6+8)/2=14/2=7;x_2=(-√36-(-8))/(2*1)=(-6-(-8))/2=(-6+8)/2=2/2=1.
Если угол a в пределах [0°;90°], то sin,cos,tg,ctg этого угла имеют положительное значение.воспользуемся формулами:sin^2a+cos^2a=1 \\tga= \frac{sina}{cosa} \\ctga= \frac{1}{tga} известно, что sina=1/4тогда:cos^2a=1-sin^2a \\cosa=\sqrt{1-sin^2a}=\sqrt{1- \frac{1}{16}}=\sqrt{ \frac{15}{16} }= \frac{\sqrt{15}}{4} \\tga= \frac{ \frac{1}{4} }{\frac{\sqrt{15}}{4} } = \frac{1}{\sqrt{15}} = \frac{\sqrt{15}}{15} \\ctga= \frac{1}{ \frac{\sqrt{15}}{15}} = \frac{15}{\sqrt{15}} =\sqrt{15}
X^2+y^2=6 это окружность с цетром в начале координат; радиус=кор(6); график y-x^2=p; y=x^2+p -парабола; для 1 решения нужно такое число p при котором окружность пересекается с вершиной параболы 1 раз; т.е надо параболу сдвинуть по оу на радиус окружности; значит p=радиусу окружности; p=кор(6);Ответ: p=кор(6)