2а-а=а. а×(2-а)=а. 2×а-а×а=а
допустим а=1
2×1-1=1 1×(2-1)=1 2×1-1×1=1
<span>4а</span>³<span> - аb</span>² = a(4a²-b²) = a((2a-b)(2a+b))
План действий такой:
1) ищем производную
2) приравниваем её к нулю и решаем уравнение
3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке
4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума.
Начали?
1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)²
2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0
-2х² - 4х -3 +х² = 0
-х² -4х -3 = 0
х² + 4х + 3 = 0
х1 = -1; х2 = -3
<span>3) </span><u>-∞ + -3 - -1 + +∞</u>
4) функция возрастает при х∈( -∞; -3)∨(-1; +∞)
функция убывает при х ∈(-3; -1)
х = -3 точка мак4симума
<span> х = -1 точка минимума.</span>
По теореме пифагора найдёшь стороны
только неизвестную сторону возьми за х
и получишь ответ катет рааен 5,а гипотенуза 7