Квадратный трехчлен ax²+bx+c можно разложить на множители по формуле:
ax²+bx+c=a(x-x₁)(x-x₂), где х₁,х₂- корни квадратного трехчлена
1)4x²+7x-2=4(х-(-2))(х-(1/4))=(х+2)(4х-1)
D=7²-4·4·(-2)=49+32=81
x₁=(-7-9)/8=-2; x₂=(-7+9)/8=1/4.
2)8x²-2x-1=8(x-(-1/4))(x-(1/2))=(4x+1)(2x-1)
D=(-2)²-4·8·(-1)=4+32=36
x₁=(2-6)/16=-1/4; x₂=(2+6)/16=1/2.
3)12x²-x-1=12(x-(-1/4))(x-(1/3))=(4x+1)(3x-1)
D=(-1)²-4·12·(-1)=1+48=49
x₁=(1-7)/24=-1/4; x₂=(1+7)/24=1/3.
4)x²+3x-40=(x-(-8))(x-5)=(x+8)(x-5)
D=(3)²-4·1·(-40)=4+160=169
x₁=(-3-13)/2=-8; x₂=(-3+13)/2=5.
5)x²+10x-11=(x-(-11))(x-1)=(x+11)(x-1)
D=(10)²-4·1·(-11)=100+44=144
x₁=(-10-12)/2=-11; x₂=(-10+12)/2=1.
6)x²-x-56=(x-(-7))(x-8)=(x+7)(x-8)
D=(-1)²-4·1·(-56)=1+224=225
<span>x₁=(1-15)/2=-7; x₂=(1+15)/2=8.</span>
5х²-3х-14=0
D= 9- 4*5*(-14) =9+280=289
D>0, два корня
х₁= (3- 17) /10 = -14/10= -0,14
х₂= (3+17)/10 = 20/10=2
Ответ: х₁= - 0,14 , х₂=2
x^4-x^2-12=0
Обозначим x^2 за а. а больше или равно 0.
a^2-a-12=0
D=1+4*12=1+48=49
a1=(1+7)/2=4
a2=(1-7)/2=-3
Т.к. а больше нуля, то x^2=4
x=2 x=-2
Ответ: 2 и -2