Наверное, "имеет центр в точке (-3; 0; 2)"
Уравнение
(x+3)² + y² +(z-2)² = 5²
1) тк КК1 - биссектриса, то угол ОКМ равен 30°:2=15°
2) угол КМО равен 180°-107°-15°=58°=> угол КМТ равен 58°•2=116°
3) тк 116°>90°, то угол КМТ - тупой=> треугольник МТК - тупоугольный
Лови Трапеция АВСД, М - точка касания на стороне АВ, Н - точка касания на стороне ВС, К - точка касания на стороне СД, Л - точка касания на стороне АД
АМ=АЛ, ЛД=КД, КС=СН, ВН=НМ, как касательные к окружности, проведенные из одной точки
АЛ+ЛД=КД+АМ =АД
ВН+НС=СК+МВ=ВС
АД+ВС = КД+АМ + СК+МВ, но АМ+МВ=АВ, и КД+СК=СД
АД+ВС=АВ+СД
Рассмотрим рисунок, данный во вложении.
<em>Отрезки касательных, проведенных к окружности из одной точки, равны</em>.
Поэтому, соединив точки касания вписанной окружности, мы получим три равнобедренных треугольника.
Углы 1 равны (180°-80°):2= 50°
Углы 2= (180°-70°):2=55°
Углы 3=(180°-30°):2=75°
Отсюда
угол 4 равен 180°-50°-75°= 55°
Угол 5= 180°-55°-50°=75°
Угол 6=180°-75°-55°=50°
Ответ: Искомые углы 50°,55°,75° <span> </span>
1) Рассмотрим треугольник АОС и треугольник BOD: АО=ОВ, ОС=ОД - поскольку т. О - середина отрезков АВ иСД, Угол АОС= углу ВОД - как вертикальные.
Треугольник АОС = треугольнику BOD - по двум сторонам и углу между ними.
2) Из равенства треугольников следует равенство соответствующих углов:
угол АОС=углу ОДВ=20°,
По свойству углов треугольника: угол САО=180°-(115°+20°)=45°