2) log0,5_(2x+1) = - 2;
- log2_(2x+1) = - 2;
log2_(2x+1) = 2;
2x+ 1= 2^2;
2x = 3;
x= 1,5.
3)log2_(4 - 2x) + log2_3 = 1;
log2_((4-2x)*3 = 1;
log2_(12 - 6x) = 1;
12 - 6x = 2^1;
12 - 6x = 2;
- 6x = -10;
x = 10/6= 5/3.
4) log7_(x-1) = log7_2 + log7_3;
log7_(x-1) = log7_(2*3);
x - 1 = 6;
x = 7.
5)1 ≤ 7x - 3 < 49; +3
1 + 3 ≤ 7x < 49 + 3;
4 ≤ 7x < 52;
4/7 ≤ x < 52/7.
6) log2_(1 - 2x) < 0;
log2_(1 - 2x) < log2_1;
2 > 1; ⇒ 1 - 2x < 1;
- 2x < 1 - 1;
- 2x < 0; /-2 < 0;
<u>x > 0
</u> 7) lg(0,5 x - 4) < 2;
lg(0,5x - 4) <lg100;
0,5x - 4 < 100;
0,5 x < 104; * 2>0;
<u>x < 208
</u><u />8) log0,2_(2x+3) ≥ - 3; 0,2 = 1/5 = 5^(-1);
- log5_(2x + 3) ≥ - 3; /-1 <0;
log5_(2x + 3) ≤ 3;
log5_(2x+3) ≤ log5_125;
5 > 1; ⇒ 2x + 3 ≤ 125;
2 x ≤ 122;
x ≤ 61.
В первом задании не понятно условие.
<u>
</u>
Находим первообразные:
Находим ограничения трапеции, путем приравнивания ф-ий.
Получается интегрирования ф-ии ограничено
(в интеграле внизу -2, просто чего-т не рисуется)
Ответ:
Под буквой а) ответ 400
под буквой б) ответ 5/8
5) при а=0 6)при а=-15 7) 2а-5=0 2а=5 а=5:2=2,5 при а=2,5
8) а-3=0 а=3 при а=3
1) Для начала нужно найти общий знаменатель у тех чисел, что в скобках:
он будет y(x+y), т.к у первой дроби не хватает (x+y), а у второй y, то число в числители умножаем на то, чего не хватает :
(1 · (х+у) - 1 · у ) - это числитель,
а в знаменателе уже пишем общий числитель, который нашли ранее, т.е у(х+у): вот так:
(1 ·(х+у) -1 · у / у(х+у)
теперь в числители нужно раскрыть скобки
(х+у - у) - это новый числитель, но и тут нужно упростить, т.к +у и -у -их нужно сократить, в итоге в числители остается только х, а в знаменатели у(х+у) вот так:
х/ у(х+у)
теперь переходим ко второму действию, а именно , нам нужно получившуюся дробь х/у(х+у) разделить на дробь х/у
Для этого нужно дробь перевернуть и произвести умножение (сокращение)
х/у(х+у) ·у/х после сокращения остается 1 /х+у это и есть ответ