<span>https://www.roofos.ru тут смотри
</span>
<span>
S</span>
<span> </span><span>
O </span><span> K
</span><span><span> Пирамида
правильная, значит в основании лежит равносторонний треугольник. По условию
задачи сторона правильного треугольника </span>a = 10 см</span>
<span> </span><span>Найдём радиус вписанной в равносторонний треугольник окружности:</span><span><span> </span>ОК
= <span> (</span>см)</span><span><span>где р – периметр
основания, l – апофема</span></span><span><span>По условию задач, боковая грань наклонена к плоскости основания
под углом в 600 , значит в </span><span> треугольнике
SOK линейный угол <</span>SKO<span> = 600 ; </span> </span><span>Апофема <span> SK
= </span>I
= H : sin </span><span> </span><span><span> + </span></span><span><span>Ответ: </span><span /></span>
<span>Угол BEA равен углу EAD как накрест лежащий, следовательно угол BAE равен углу BEA, значит треугольник ABE - равнобедренный
треугольник ABE - равнобедренный, следовательно AB=BE=12 см
Так как это параллелограмм CD=AB=12
P=AB+BC+CD+AD, AD+BC=P-AB-DC=24, так как BC=AD, то AD=1/2(AD+BC)=12</span><span>
</span>
AB=√AC²+BC²=√25+75=√100=10
sin<B=AC/AB=5/10=1/2
<B=30