Y³-49y=y(y²-49)=y(y-7)(y+7)
5x²-11x+2=0
D=(-11)²-4*5*3=121-40=81=9²
x=11<span>±9/10
x</span>₁=2
x₂=1/5=0.2
Ответ:
Объяснение: 1) S=∫₋₃⁻¹(-x²-2x+5-(-x²-6x-7))dx+∫₋₁¹(-x²-2x+5-2x)dx=
=∫₋₃⁻¹(4x+12)dx+∫₋₁¹(-x²-4x+5)dx=4(1/2x²+3x)║₋₃⁻¹+(-1/3x³-
-4·1/2x²+5x)║₋₁¹=4·((1/2·(-1)²+3·(-1)-1/2·(-3)²-3·(-3))+(-1/3·1³-2·1²+5·1-
-(-1/3)·(-1)³+2·(-1)²-5·(-1))=4·(1/2-3-9/2+9)+(-1/3-2+5-1/3+2+5)=8+9-2/3=
=16+1/3 (ед²)
2) S=∫₋₁¹(2x+5-x²+2x)dx+∫₁³(x²-6x+12-x²+2x)dx=∫₋₁¹(-x²+4x+5)dx+
+∫₁³(-4x+12)dx=((-1/3)x³+4·1/2·x²+5x)║₋₁¹+((-4)·1/2·x²+12x)║₁³=
=(-1/3+2+5-1/3-2+5)+(-18+36+2-12)=10-2/3+8=17+1/3 (ед²)
√(81 - x⁴) + ⁴√(2x² - 18) + ⁶√(x⁶ - 729) = 0
посмотрим на уравнение
слева стоит сумма корней четной степени они каждый больше или равен 0, справа 0
Значит каждый корень должен быть равен 0
Нам надо чтобы все три подкоренных выражения были равны 0 и все корни cовпадали
81 - x⁴ = 0
(9 - x²)(9 + x²) = (3 - x)(3 + x)(9 + x²) = 0
x = 3
x = -3
2x² - 18 = 2(x² - 9) = 2(x - 3)(x + 3) = 0
x = 3
x = -3
x⁶ - 729 = x⁶ - 3⁶ = (x² - 3²)(x⁴ + 9x² + 81) = (x - 3)(x + 3)(x⁴ + 9x² + 81) = 0
x = 3
x = -3
Ответ х = {-3, 3}