Пусть x - скорость пешехода, а y - скорость велосипедиста.
Пешеход в сумме двигался на 40 минут дольше, то есть на 2/3 часа.
t пешехода = 5 / x
t велосипедиста = (5 / y) + 2/3
Приравниваем:
5/x = (5/y) + 2/3
Приводим к общему знаменателю:
15y/3xy =(15x/y)/3xy + 2xy/3xy
15y = 15x + 2xy
Зная, что y = x + 10, решаем уравнение:
15(x+10) = 15x + 2x(x+10)
15x+150=15x+2x²+20x
2x²+20x-150=0
x²+10x-75=0
D = 100 + 300 = 20²
x₁ = 5 x₂ = -15
Но скорость не может быть отрицательной, поэтому x = 5
Откуда y = 15
Ответ: скорости пешехода и велосипедиста равны 5 и 15 км/ч соответственно.
Первое действие в скобках
14/11+17/10 = 140/110+187/110 = 327/110
дальше умножение
327/110 * 11/5 = 327/10 * 1/5 = 327/50 = 654/100 = 6,54
x^2-4x+b=0
По т. Виета: x1+x2=4
x1*x2=b
Зная, что 2x1+3x2=5, составим систему 2x1+3x2=5
x1+x2=4
x2=-3, x1=7,, тогда
7*(-3)=b, b=-21