///////////////////////////////////////////////
Кривые второго порядка.
1) Тут явно опечатка, должно быть 4y^2.
x^2 - 6x + 4y^2 + 20y + 25 = 0
(x^2 - 6x + 9) - 9 + 4(y^2 + 2*y*5/2 + 25/4) - 25 + 25 = 0
(x - 3)^2 + 4(y + 5/2)^2 = 9
(x - 3)^2 / 9 + (y + 5/2)^2 / (9/4) = 1
Это эллипс с центром (3, -5/2) и полуосями a = √9 = 3; b = √(9/4) = 3/2
2) 9x^2 - 12x + y^2 + 4y - 8 = 0
9(x^2 - 12/9*x) + (y^2 + 4y) - 8 = 0
9(x^2 - 2*x*2/3 + 4/9) - 4 + (y^2 + 4y + 4) - 4 - 8 = 0
9(x - 2/3)^2 + (y + 2)^2 = 16
(x - 2/3)^2 / (16/9) + (y + 2)^2 / 16 = 1
Это эллипс с центром (2/3; -2) и полуосями a = √(16/9) = 4/3; b = √16 = 4
1) 0,1(3x - 4) = 100
3x - 4 = 1000
3x = 996
x = 332
2) 2x + 3 + 4 - 2x = 24
0x = 17
x - не существует
3) 9x - 6/3x - 27 = 0 ; x не равно 0
9x^2 - 27x - 2= 0
D = 729 + 72 = 801
x = (27 + корень из 801)/18
x = (27 - корень из 801)/18
Решение
Найдём первую производную:
3x^2 - 12x = 3x(x-4)
Приравняем к нулю:
2х(х-4)=0
х1 = 0
х2 = 4
Вычислим значение функции
у(0) = 0
у(4) = -32
уmin = - 32
ymax = 0
Используя достаточное условие экстремума найдём вторую производную
6x - 12
Вычисляем значение второй производной в точке х1 = 0
6*0 -12 = -12 < 0 , значит х = 0 точка максимума
Вычисляем значение второй производной в точке х2 = 4
6*4 - 12 = 12 > 0, значит точка х = 4 точка минимума.
3 ч-1/3бассейна
12-9=3ч-на 3 ч больше 2 труба
9-3=6ч-нужно первой трубе чтобы наполнить бассейн
6+3=10ч