X²/(x+2) ≤ 1
x²/(x+2) - 1 ≤ 0
(x²-x-2)/(x+2) ≤ 0
D=1+8=9
x12=(1+-3)/2=-1 2
(x-2)(x+1)/(x+2) ≤ 0
------------ -2 ++++++++ -1 -------------- 2 +++++++++
x∈(-∞ -2) U [-1 2]
Ответ С (х=2)
1) y=<u>2√x </u>= 2x^(¹/₂ -3) = 2x^(-2.5)
x³
y' = 2*(-2.5)x^(-2.5-1) = -5x^(-3.5) = _ <u> 5 </u>
(x³) √x
2) y= <u>6∛x</u> = 6x^(¹/₃ - ¹/₂) = 6x^(⁻¹/₆)
√x
y' = 6*(-¹/₆) x^(-¹/₆ -1)= -x^(-⁷/₆) = <u>- 1 </u>
x (⁶√x)
3) y=⁴√(1/x³) = <u> 1 </u> = x^(-³/₄)
x^(³/₄)
y' = -³/₄ x^(-³/₄ - ⁴/₄) = -³/₄ x^(⁻⁷/₄) = <u> - 3 </u>
4x (⁴√(x³))
4) y=∛(1/x⁻²) = <u> 1 </u> = x^(²/₃)
x^(⁻²/₃)
y' =²/₃ x^(²/₃ - ³/₃) = ²/₃ x^(-¹/₃) =<u> 2 </u>
3 ∛x
5) f(x) =x⁻² √x ∛x = x^(-2 + ¹/₂ + ¹/₃) = x^(-¹²/₆ + ³/₆ + ²/₆) = x^(⁻⁷/₆)
f(x)' = -⁷/₆ x^(-⁷/₆ - ⁶/₆) = -⁷/₆ x^(⁻¹³/₆) = <u> -7 </u>
6x² (⁶√x)
6) S= <u>∛t ∛(t²)</u> = t^(¹/₃ + ²/₃ - 1) =t⁰ = 1
t√1
S' = (1)' = 0