Ответ:
а^2=с^2-b^2= 9^2-(3√5)^2= 81 - 45 = 36
a=√36=6
MN=½AC
9 = ½АС
АС = 4,5
АВ + ВС = 58 - 4,5
АВ + ВС = 53,5
АВ = 26,75
1)Диаметр равен 10 т.к треугольник прямоугольный=> гипотенуза проходит через центр
Обозначим нашу пирамиду АВСД-основание , М-вершина , МО--высота , точка О-
точка пересечения диагоналей ,МК--апофема ( высота боковой грани ) , К∈ДС.
Sб=1\2РL ( L --апофема , найдём её)
Рассмотрим ΔМОД , угол О=90 град. ОД=1\2ВД=1\2√2·z=√2Z\2
Найдём высоту пирамиды: ОМ²=МК²-ОД² ( по теореме Пифагора)
ОМ=√(g²-z²\2)=H
Для того , что бы найти апофему , рассмотрим ΔМОК ( угол О=90)
ОК=1\2z
по теореме Пифагора : L=MK=√((1\2z)²+(g²-z²\2)=√(g²-z²\4)
P=4z
S=1\2·4z·√(g²-z²\4)=2z√(g²-z²\4)