1) Подкоренное выражение корня чётной степени должно быть ≥ 0.
x² + 3x - 40 ≥ 0
( x + 8)( x - 5) ≥ 0
+ - +
____________________________
- 8 5
Область определения: все значения x ∈ (- ∞ ;- 8]∪[5 ; + ∞)
2) Знаменатель дроби не должен равняться 0
a) 3x² - x - 4 ≠ 0 б ) 5 + 19x - 4x² > 0
x ≠ - 1 и x ≠
4x² - 19x - 5 < 0
(x - 5)(x + 0,25) < 0
+ - +
_______________________
- 0,25 5
x ∈ (- 0,25 , 5)
Окончательный ответ, с учётом этих двух условий:
x ∈ (- 0,25 ;
)∪(
; 5)
Пусть z=a+bi;
представим в тригонометрическом виде:
;
По формуле Муавра,
cos2x=0
или sin3x=0
2x=π/2+πn, n∈Z 3x=πn, n∈Z
<u>x=π/4+πn/2, n∈Z </u> <u>x=πn/3, n∈Z</u>