a) f(q(x))=2^(x^4)
b) q(f(x))=(2^x)^4=2^(4x)
c) f(g(q(x)))=2^(cosx^4)
а) f(f(x))=sin(sinx)
sin(sinx)=0
sinx=
πk, k∈Z
уравнение имеет корни при |
πk|≤1, k∈Z
значит при k=0
sinx=0 ⇒ x=πn, n∈Z
б) f(g(x))=lg(cosx)
lg(cosx)=0
cosx=10^0
cosx=1
x=2πm, m∈Z
По формуле Виета:
х1+х2=–а
х1•х2=72
9+х2=–а
9•х2=72
а=–х2–9
х2=8
а=–8–9=–17