2cos^2 x=-3cosx
2cos^2 x+3cosx=0
cosx(2cosx+3)=0
cosx=0 2cosx+3=0
x=pi/2+pin cosx=-3/2; -3/2<-1; |cosx|=<1
решений не имеет
Выбираем корни
-pi/2<x<pi; -pi/2<pi/2+pin<pi
-pi/2-pi/2<pin<pi-pi/2
-pi<pin<pi/2
-1<n<1/2, n=0; x=pi/2+pi*0; x=pi/2
Ответ. pi/2+pin, n-целое; pi/2
Использованы формулы производных, формула синуса двойного угла