Из т. A опустим перпендикуляр на прямую DE (см. прикрепленный рисунок). Пусть AH - этот перпендикуляр, (длину которого и требуется найти в задаче). Тогда AH⊥DE. Проведем отрезок CH в плоскости CDE.
Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH.
Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора:
DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12²,
DE = √(4*12²) = 2*12.
Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12.
По т. Пифагора для ΔCDH.
CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12²,
CH = √(12²) = 12.
Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°.
По т. Пифагора для ΔACH:
AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369,
AH = √(1369) = 37.
Ответ. 37 дм.
Сумма всех углов ромба равна (n-2)*180=(4-2)*180=360
X+x+x+20x+20=360
4x=320
X=80
x+20=80+20=100
Ответ в ромбе 2 угла по80 и два угла по 100
Большая диагональ будет являтся диаметром этой окружности, поэтому она равна 2R=2*7,2=14,4
Ответ: 14,4
Высота цилиндра равна диаметру сферы и диаметру окружности основания цилиндра.
Площадь сферы находится по формуле pi *d^2
pi * d^2 = 41
d = корень из (41/pi)
Площадь цилиндра равна: 2*S1 (сумме площадей двух оснований) + S2 (площадь боковой поверхности)
Площадь основания находится по формуле S1 = (pi*d^2)/4
площадь боковой поверхности находится так: высота цилиндра * длина окружности основания S2 = d*pi*d = pi*d^2
Итого площадь цилиндра:
S = 2*S1 + S2
S = 2*(pi*d^2)/4 + pi*d^2 = 1.5pi*d^2
подставляем d = корень из (41/pi) - получаем:
S = 61.5
В решении используется свойство треугольников, имеющих общую высоту: площади треугольников, имеющих общую высоту относятся как основания, к которым проведена эта высота.
Сами общие высоты на рисунках не проведены.
ΔВОК и ΔВОС имеют общую высоту (из вершины В):
Sbok : Sboc = OK : OC = 10 : 45 = 2 : 9
ΔСОВ и ΔCOD имеют общую высоту (из вершины С):
Scob : Scod = BO : OD = 45 : 54 = 5 : 6
Проведем ВЕ║АС до пересечения с прямой СК.
.
ΔЕВО подобен ΔСВО по двум углам:
ЕО : ОС = ВО : OD
EO = (OC · BO) / OD
EO = (5x · 9y) / (6x ) = 45y / 6 = 15y /2
EK = EO - KO = 15y / 2 - 2y = 11y / 2
ΔEBK подобен ΔСАК по двум углам:
ВК : КА = ЕК : КС = (11y/2) : (11y) = 1 : 2
ΔCBK и ΔСАК имеют общую высоту (из вершины С):
Scbk : Scak = BK : KA = 1 : 2
Scak = 2 · Scbk = 2 · 55 = 110
Sabc = Scbk + Scak = 55 + 110 = 165