(p-1)^2+(p-1)x-1=0
p^2-2p+1+px-p+1=0
p^2-3p+px+2=0
Уравнение имеет один корень, если D равен нулю, по формуле D=b^2-4ac получаем:
(-3p)^2-8=0
p=+-Кв крень из:8/9
След. уравнение имеет один корень при p=+-Кв крень из:8/9
в решении я уверен, а вот в том, что ты дал правильное условие нети, там не может получиться px, тогда это будет не квадратный трёхчлен)
Ну помог, чем смог)
X(1+y)/[x(1-y(]=(1+y)/(1-y)
y(1+x)/[y(1-x)]=(1+x)/(1-x)
1) Sin^2x-4sinx+3=0
Пусть sinx =t, тогда
t^2-4t+3=0
По теореме Виета
t1+t2=4
t1*t2=3,следовательно
t1=1
t2=3
Также можно найти корни через дискриминант.
Далее
Sinx =1
X=arcsin1+ пи
Х=пи/2+пи
Sinx=3
X=arcsin3+пи
2) cos^2x-sinx=1
Cos^2x-sinx-1=0
Т.к. Cos^2x+sin^2x=1, то
Cos^2x=1-sin^2x, следовательно,
1-sin^2x+sinx -1=0
-sin^2x+sinx=0
Sinx(-sinx+1)=0
Sinx =0
X=arcsin0+ пи
Х=пи;
-sinx+1=0
Sinx=1
X=ascrsin1+пи
Х=пи/2+пи
<em>y-это сложная функция, т.к. обратная тригонометрическая зависит от степенной, а та в свою очередь от линейной. Производную берем от арксинуса, потом от корня квадратного, потом от линейной и находим произведение этих производных.</em>
<em>y'=(arcsin√(2x+1))'=(1/(√(1-(√(2x+1)²)*(1/(2√(2x+1)))*(2x+1)'=</em>
<em>(2/(√(1-2x-1))*(1/(2√(2x+1)))=1/((√-2x)*(√(2x+1)))=1/(√(-4x²-2x))</em>
<em>Использовал табличные производные (√u)'=u'/(2√u)</em>
<em>(arcsinu)'=u'/√(1-u²); (kx+b)'=k</em>
Вс=13²-12²=169-144=25, √25=5
S=12+13+5=30 см²
R=S/ac*вс*4
R=30/(12+5)=30/17=1,7*4=7,05 см