По индукции.
<u>База</u>. n = 1: 4^2 + 3^2 = 25 делится на 5.
<u>Переход</u>. Пусть делится при n = k. Рассмотрим n = k + 1:
4^(k + 2) + 3^(2k + 2) = 4 * 4^(k + 1) + 9 * 3^(2k) = 4(4^(k + 1) + 3^(2k)) + 5 * 3^(2k)
Первое слагаемое делится на 5 по предположению индукции, второе - тоже очевидно делится на 5, значит, вся сумма делится на 5. Индукционный переход доказан.
Тогда по принципу математической индукции это верно для всех натуральных n.
Пусть х-это скорость течения реки.Тогда скорость по течению реки будет (18+х),а против течения реки будет (18-х).
Составим уравнение 50 км/(18+х) + 8км/(18-х) = 3 часа
50·(18-х) + 8·(18+х) - 3·(18+х)·(18-х) =0
(только х≠18 , чтобы знаменатель не был равен нулю)
900 -50х + 144 + 8х - ( 54+3х)·(18-х)=0
1044 -42х - (972-54х+54х-3х²)=0
1044 - 42х -972 +54х -54х +3х²=0
3х²-42х+72=0
разделим всё на 3,каждый член, для облегчения решения
х²- 14х+ 24 =0
Д=196-4·1·24=100
х= 12 и х=2 Скорость реки не может быть почти равной скорости теплохода, поэтому х=12 мы не принимаем за ответ.
Ответ: х=2км/ч
5(x-8)+1>11
5x-40+1>11
5x>11+39
5x>50
x>10
x∈(10;∞)
3у+4.1<у-0.5
3y-y<-0,5-4,1
2y<-4,6
y<-2,3
y∈(-∞;-2,3)
{3х>12+11х ⇒11x-3x<-12⇒8x<-12⇒x<-1,5
{5х-1<0 ⇒5x<1⇒x<0,2
x∈(-∞;-1,5)