1. Если две противоположные стороны четырехугольника равны и параллельны, то такой четырехугольник параллелограмм.
2. Сумма углов параллелограмма , прилежащих к одной стороне , равна 180 градусов.
3. Верно ли следующее высказывание :
а) Диагонали параллелограмма делят его на четыре равных треугольника. - нет
б) Четырехугольник у которого две стороны параллельны и равны , называется параллелограммом. - да
в) Может ли один угол параллелограмма быть равным 30º, а другой - 50º? - нет, потому что сумма углов, прилежащих к одной стороне, 180 градусов
4. Четырехугольник АВСД – параллелограмм. Если ∟В = 70º, то угол Д
=70 градусов, т.к. противолежащие углы параллелограмма равны
Сумма двух соседних сторон параллелограмма равна 10 см. Чему равен его периметр? - Р=10*2=20 см.
По теореме синусов найдем гипотенузу АВ , она равна АСsin90\2\корень 13 и равна 3 кореней 13. По теореме Пифагора найдем ВСквадрат, она равна (3корней12)квадрат - 6квадрат = 117 - 36 = 81 следовательно ВС равно квадратный корень из 81 и равна 9см.
Внешний угол =60°, => <B=120°
<A=<C=30°(по условию треугольник равнобедренный)
расстояние от вершины с до прямой АВ - это перпендикуляр СМ из вершины С на продолжение стороны АВ , т. к. <B тупой.
получим прямоугольный ΔАМС: АС- гипотенуза =42 см, <А=30°, СМ -катет против угла 30°, => СМ=АС/2
<u>СМ=21 см.</u>
У ромба все стороны равны. Теперь проведем диагонали AC и BD. Очевидно, что большая диагональ лежит против большего угла (у нас он тупой), а против острого угла (тот, который равен 60 градусов), лежит меньшая диагональ. Теперь рассмотрим треугольник ABD. Нам известны две стороны и угол, противолежащий третьей стороне. Самый лучший вариант это применить теорему косинусов. Формулировка теоремы косинусов:
Находим ответ после вычислений: BD=20.
27)Вписанный угол равен половине дуги,на которую он опирается. То есть,дуга равна 144×2=288°