Колесо - это окружность. Окружность равна 360°. Всего в колесе 12 спиц, значит 360°:12=30°
Ответ: 30°
Для начала учтем, что требуется найти. Нам дано нижнее основание трапеции. А для площади нужно еще знать верхнее основание и высоту трапеции.
1) Очевидно, что раз окружность вписана в трапецию, значит она касается всех сторон трапеции, в том числе и оснований. Для равнобокой трапеции расстояние между основаниями будет равно диаметру вписанной окружности, и это расстояние будет равно как раз высоте трапеции. То есть высота равна 4.
2) Поскольку окружность вписана в равнобедренную трапецию, то сумма оснований равна сумме боковых сторон.
Пусть верхнее основание равно х, тогда каждая из боковых сторон равна (х + 8)/2.
Теперь, проведя высоту, мы получим прямоугольный треугольник, гипотенузой которого является боковая сторона трапеции, один из катетов - высота трапеции, а второй катет (исходя из того что трапеция равнобедренная) будет равен (8 - х)/2. (из нижнего основания вычесть верхнее и разделить на 2).
Тогда по теореме Пифагора имеем:
((х+8)/2)² = 16 + ((8-х)/2)²
(х² + 16х + 64)/4 = 16 + (64 - 16х + х²)/4
х² + 16х + 64 = 64 + 64 - 16х + х²
32х = 64
х = 2 (верхнее основание) (кстати, получилось, что в таком случае верхнее основание и высота трапеции по длине совпали!!!)
3) И находим площадь трапеции: (2+8)/2*4 = 20
Ответ: 20
Примерно так,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Гипотенуза равна 1+8=9
Воспользуемся теоремой- катет есть среднее пропорциональное между нипотенузой и проекцией этого катета на гипотенузу. гипотенуза равна (, проекция катета равна 1
х²=1·9=9 х=3
ответ меньший катет равен 3
CH/AH=tgA; CH=AH*tg^60o=6V3.
Высота, проведенная из вершины прямого угла, делит треугольник на два тр-ка подобных данному, и подобных между собой. В подобных тр-ках сходственные стороны пропорциональны:
<span>АН/СН=СН/ВН; ВН=СН^2/AH=(6V3)^2/6=36*3/6=18. Ответ: ВН=18(см). </span>