Треугольник МНК, уголН=60, КН=8, площадьМНК=1/2*МН*КН*sin60, 10*корень3=1/2*МН*8*(корень3/2), МН=5, КМ в квадрате=МН в квадрате+КН в квадрате-2*МН*КН*cos60=25+64-2*5*8*1/2=7
Если два круга лежат один на одном то надо от сумы их площадей отнять площадь наложения
1+1-1/8=1.875 см^2
1) рассмотрим треугольник KSM и треугольник NSL:
a) угол KSM = углу NSL - вертикальные;
б) KS = SL, т. к. S - середина КL
в) MS = SN, т. к. S - середина MN
=> треугольник KSM = треугольнику NSL по двум сторонам и углу между ними
2) т. к треугольник KSM = треугольнику SNL, угол KSM = углу NSL, то KM = LN
(аналогично с другиси сторонами)
3) рассмотрим трeугольники KSN и MSL:
a) углы KSN и MSL равны, т. к. вертикальные
б) KS = SL т. к. S - середина KL
в) MS = SN, т. к. S - середина MN
=> треугольники KSN и MSL равны
4) т. к. треугольники KSN и MSL равны, углы KSN и MSL равны, то КN = МL
Рассмотрим треугольник ACD: угол д = 60 градусов.В р.б. трапеции углы при каждом основании равны, следовательно угол а = 60 градусов. угол CAD=60/2=30, значит угол ACD равен 90 градусов. по свойству прямоуг. треугольника, напротив угла в 30 градусов лежит половина гипотенузы, значит CD=6 см. Так как AB=CD, АВ=6см. По сумме углов выпуклого четырёхугольника 360-(уголА+уголD)=угоол В+ угол С = 360-120=240. Значит угол В 120градусов и С тоже. Рассмотрим треугольник АВС: угол ВАС равен 30гр. угол В равен 120 гр. Угол АСВ равен уголС-угол ACD =30гр. Так как углы при основании равны треугольник АВС равнобедренный. Следовательно ВС равно 6 см. Найдём периметр трапеции: Ab+ BC+ CD+ AD=6+6+6+12=30cм.ОТВЕТ:30
Нет, они будут скрещивающимися.