Ответ ответ ответ ответ ответ
1) Основание высоты правильной четырёхугольной пирамиды лежит в точке пересечения диагоналей основания, значит АО=СО.
ДО⊥АС, МО⊥АС ⇒ МДО⊥АС. КО∈МДО ⇒ КО⊥АС.
КО⊥АС и АО=СО, значит ΔКАС равнобедренный.
2) Смотри п.1)
3) АС=d=АВ√2=а√2.
ДО=АС/2=а√2/2.
cos∠МДО=ДО/МД=а√2/(2·а√2)=1/2,
∠МДО=60°.
4)В тр-ке МДО МО=√(МД²-ДО²)=√(2а²-а²/2)=√((4а²-а²)/2)=а√3/√2=а√6/2.
КО=h=ab/c=МО·ДО/МД=а√6·а/(2√2·а√2)=а√6/4.
В тр-ке АКО tg∠АКО=АО/КО=а·4/(√2·а√6)=4/√12=4/2√3=2/√3.
∠АКО=arctg(2/√3).
∠AKC=2∠AKO=2arctg(2/√3) - да, верно.
Интересная задачка!
Sa (площадь треугольника AEM) составит (1/3)*(2/5) от площади всего треугольника ABC или 2S/15 так как его высота составляет всего треть от треугольника ABC, а основание 2/5 от основания ABC.
Аналогично Sb (площадь треугольника BEF) составит (2/3)*(1/6) от площади всего треугольника ABC или S/9
Аналогично Sс (площадь треугольника CMF) составит (5/6)*(3/5) от площади всего треугольника ABC или S/2
В сумме Sa+Sb+Sc = S*(2/15+1/2+1/9), следовательно площадь треугольника EFM или So = S - (Sa+Sb+Sc) = S(1 - (2/15+1/2+1/9)) = S(1 - 67/90) = 23S/90
Искомое соотношение площадей: 23/90, если ничего не напутал