ΔОВС - равнобедренный, ОС=ОВ как радиусы
∠ОСВ=∠ОВС=32°
∠СОВ=180-(32+32)=116°
∠АОС=180-116=64°
Находим проекции боковых рёбер на основание.
Они равны (2/3) высоты основания,то есть (2/3)*(6√3*(√3/2)) = 6.
Проекции точек E и F отделяют на основании отрезки от основания высоты, равные (1/4)*6 = 3/2 и (1/2)*6 = 3.
Получаем проекцию E1F1 отрезка EF на основание как сторону треугольника с двумя известными сторонами (3/2) и 3 и углом между ними 120 градусов.
E1F1 = √((9/4) + 9 - 2*(3/2)*3*cos120°) = √(9 +36 + 18)/2 = √63/2.
Высоты точек E и F от основания равны соответственно (3/4)*4 = 3 и (1/2)*4=2. Разность высот равна 3 - 2 = 1.
Угол между прямой EF и плоскостью основания ABC - это плоский угол между прямыми EF и E1F1.
Отсюда находим тангенс искомого угла.
tg α = 1/(√63/2) = 2/√63 ≈ 0,251976.
Угол α = 0,24684 радиан или 14,14277 градуса.
<span>высоты пирамиды до ее апофемы равно 3 см
</span>
Уг3=180-142=38гр - внутр и внеш угол
т.к сумма углов в треугольнике равна 180 гр,то
180-38=142 гр-сумма 1и2 угла
Все верно аргумент найдите где и нашли этот ответ а так все вроже сходиться по старым воспоминаниям или выделите главную тему что вы тут описали и будет аргумент