1) (a-b)(a^2-b^2)=(a+b)(a-b)^2
(a-b)(a+b)(a-b)=(a+b)(a-b)^2
(a-b)^2(a+b)=(a+b)(a-b)^2
Решение
Найдите координаты точек, в которых касательные к графику функции
y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс.
Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент k = - 1.
k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² =
= - 4 /(x - 3)²
y` = - 1
- 4 / (x - 3)² = - 1
x² - 6x + 9 = 4
x² - 6x + 5 = 0
x₁ = 1
x₂ = 5
y₁ = - 1
y₂ = 3
Запишем уравнения этих касательных:
1) y = - (x - 1) - 1
2) y = - (x - 5) + 3
Касательные пересекают ось абсцисс, значит, y = 0
Таким образом, если у = 0, то
1) y = - (x - 1) - 1
- (x - 1) - 1 = 0
x = 0
2) y = - (x - 5) + 3
- (x - 5) + 3 = 0
x = 8
Ответ: (0; 0) ; (8; 0)
2) y = √x y₀ = 2
y = y(x₀) + y`(x₀)*(x - x₀) - уравнение касательной
если у₀ = 2, то
2 = √x
x₀ = 4 абсцисса точки
а) y(x₀) = y(4) = √4 = 2
б) y` = 1/2√x
y` = 1/2√4 = 1/(2*2) = 1/4
в) y = 2 + (1/4)*(x - 4)
y = 2 + (1/4)*x - (1/4)*4
y = 2 + (1/4)*x - 1
y = (1/4)*x + 1 - уравнение касательной в точке
21/2+35 3/3+37 6/3=38 1/3
<span>7x-(x+3)=3(2x-1)</span>
<span>7x-x-3=6x-3</span>
<span>7x-x-6x=-3+3</span>
<span>0=0</span>
<span>
</span>
<span>x — любое число</span>