<span>Sin nα*cos α- Sin α*cos nα=sin(nα-</span><span>α)</span>
D₁- первая диагональ трапеции
D₂ - вторая диагональ трапеции
По свойству равнобедренной трапеции D₁=D₂=D.
S= (1/2) * D₁*D₂*sin90⁰=(1/2) * D₁*D₁*1=(1/2)*D².
1) Треугольник, образованный пересечением диагоналей и малой стороной основания трапеции 8 см:
- этот треугольник равнобедренный;
- а - катеты этого Δ, они равны между собой по св-ву равнобедренного Δ;
- гипотенуза равна 8 см;
- по т. Пифагора:
a²+a²=8²
2a²=64
a²=32
a=√32
a=4√2
Треугольник, образованный пересечением диагоналями трапеции и большей стороной трапеции 12 см:
- этот треугольник - равнобедренный;
- b - катеты этого Δ, они равны по св-ву равнобедренного Δ;
- 12 см - гипотенуза;
- по т. Пифагора:
b²+b²=12²
2b²=144
b²=72
b=√72
b=6√2
D=a+b=4√2+6√2=10√2
S=(1/2)*(10√2)²=(1/2)*(100*2)=100 (см²)
Ответ: 100 см².
Решение во вложенииииииииииииииииииииииии
!!!!!!!!!!!!!!!!!!!!!!!!!
Доказательство от противного.
Если число 9a+b делится нацело на 5, тогда и число (9a+b)+5*(a+2b) как сумма двух чисел кратных 5, первое по предположение, второе так как в разложение входит множитель кратный 5 (а именно 5)
т.е. число (9a+b)+5(a+2b)=9a+b+5a+10b=14a+11b кратно 5, что неверно по условию.
Значит предположение неверно. Значит тем самым получили что 9a+b не делится на 5 нацело. Доказано