А) 2-1,2х+14,4=10+2х
2+14,4-10=2х-1,2х
6,4=3,2х
х=2
б) 5,6-1,2у+3,4у-0,2=5,4у+11,8
5,6-0,2-11,8=5,4у+1,2у-3,4у
-6,4=3,2у
у=-2
А). 4*1/8-5= 1/2-5= -4 1/2. б). 3*(-4)-4*5-5= -12-20-5= -37.
Sin7π/2+cos5π=sin(4π-π/2)+cos(4π+π)=-sinπ/2+cosπ=-1-1=-2
Sin7x - cos13x = 0
sin7x - sin(π/2 - 13x) = 0
2 * sin0,5(7x - π/2 + 13x) * cos0,5(7x + π/2 - 13x) = 0
sin(10x - π/4) * cos(π/4 - 3x) = 0
sin(10x - π/4) = 0 или cos(π/4 - 3x) = 0
10х - π/4 = πn, n ∈ ℤ или π/4 - 3х = π/2 + πk, k ∈ ℤ
Отсюда находим х.
sinx - sin3x + sin5x = 0
(sinx + sin5x) - sin3x = 0
2 * sin0,5(x + 5x) * cos0,5(x - 5x) - sin3x = 0
2 * sin3x * cos(-2x) - sin3x = 0
sin3x * (2 * cos2x - 1) = 0
sin3x = 0 или 2 * cos2x - 1 = 0
3x = πn, n ∈ ℤ или cos2x = 0,5
3x = πn, n ∈ ℤ или х = ±π/6 + πk, k ∈ ℤ
sinx - sin2x + sin3x + sin4x = 0
(sinx + sin3x) + (sin4x - sin2x) = 0
2 * sin0,5(x + 3x) * cos0,5(x - 3x) + 2 * sin0,5(4x - 2x) * cos0,5(4x + 2x) = 0
sin2x * cos(-x) + sinx * cos3x = 0
2 * sinx * cos²x + sinx * cos3x = 0
sinx * (2cos²x + cos3x) = 0
sinx = 0 или 2cos²x + cos3x = 0
x = πn, n ∈ ℤ или 2cos²x + 4cos³x - 3cosx = 0
x = πn, n ∈ ℤ или cosx = 0 или 4cos²x + 2cosx - 3 = 0
x = πn, n ∈ ℤ или х = π/2 + πk, k ∈ ℤ или cosx = 0,25(-1 ± √13)
0,25(-1 - √13) по молулю превосходит единицу, значит cosx = 0,25(-1 + √13).
x = ±arccos(-1 + √13) + 2πm, m ∈ ℤ.