В равнобедренном треугольнике АВС ВД - высота и биссектриса, значит ∠АВС=60°. ∠ВАС=∠ВСА=(180-∠АВС)/2=60°.
В треугольнике АВС все углы равны, значит он равносторонний.
Высота равностороннего треугольника h=a√3/2,
a=2h/√3=2h√3/3.
АВ=2·6√3/3=4√3 см.
S(ABC)=AB²√3/4=48√3/4=12√3 см².
S(АВД)=S(ABC)/2=6√3/ см².
Проведём ДК⊥АВ.
S(АВД)=АВ·ДК/2 ⇒ ДК=2S(АВД)/АВ=12√3/(4√3)=3 см - это ответ.
В равностореннем треугольнике все стороны одинаковые ,если стороной 10см ,надо 10×3=30 периметр треууугольника
Так как AB=BC то углы A и C Равны при основание равнобредненного треугольника.
Тогда:
180-70=110
110/2
55
<A и <C = 55
В основании прямоугольник. В прямоугольнике все углы прямые.
AB⊥BC
АВ- проецкия наклонной КВ.По теореме о трёх перпендикулярах КВ⊥ВС.
Значит треугольник КВС - прямоугольный
По теореме Пифагора
ВС²=КС²-КВ²=9²-7²=32
ВС=√32=4√2
Противоположные стороны прямоугольника равны, значит АD=BC=4√2
Треугольник АКD - прямоугольный. ( АК⊥ плоскости АВСD, а значит перпендикуляр любой прямой , лежащей в этой плоскости)
По теореме Пифагора
AK² = KD²- AD²=6²-(4√2)²=36-32=4
AK=2
Расстоянием между скрещивающимися прямыми
АК и СD будет расстояние между плоскостями АКВ и плоскостью, параллельной этой плоскости и проходящей через CD.
Это расстояние равно AD
ответ. АК =2 см, АD= 4√2 cv
Так. Как это равнобедренный треугольник, а АМ=МК, то и СМ=КВ потому что они были отложены на боковых сторонах.
Так. Как треугольник равнобедренный, ВСМ=СВК.
Ч. Т. Д.
..................