1) Дано: АВСD - трапеция, АВ=СD, ∠А=20°.
Найти ∠В.
Решение.
В равнобедренной трапеции углы при каждом основании равны между
собой.
Сумма двух углов прилежащих к боковой стороне равны 180°.
∠А+∠В=180°, 20°+∠В=180°, ∠В=180°-20°=160°.
Ответ: 160°.
2) В этой задаче откуда взялась Н.
3) Дано: АВСD - трапеция, АВ=СD, ∠В+∠С=210°.
Найти углы трапеции.
Решение: ∠В=∠С ( в первой задаче объяснялось) ∠В=∠С=210/2=105°
∠А=∠D=180-105°=75°.
Ответ: 75°. 105°.
4) Дано: АВСD - параллелограмм, Р(АВСD)=50 см, АВ<ВС на 5 см.
Найти: АВ. ВС.
Решение. У параллелограмма противоположные стороны равны.
Пусть АВ=х, тогда ВС= х+5,
По условию: х+х+5+х+х+5=50,
4х=40,
х=10. АВ=10 см. ВС=10+5=15 см.
Ответ: 10 см; 15 см.
1) По теореме Пифагора ( или приняв во внимание, что половины диагоналей и сторона ромба составляют египетский треугольник) из прямоугольного треугольника=1/4 ромба найдем его сторону.
Она равна 5 см (√(3²+4²)
2)Из боковой грани найдем высоту параллелепипеда.
Она равна 6 см (√(61-5²)
3) Из прямоугольника, сторонам которого равны два ребра и две диагонали оснований параллелепипеда ( 6,6,8,8) находим большую диагональ параллелепипеда.
она равна 10 см. (√(6²+8²)
4)Площадь полной поверхности параллелепипеда = 2 Sосн + S бок
Sосн=S ромба=d·D:2=6·8:2=24 см²
S бок=Р·Н=5·4·6=120 см²
Sполн=120+2·24=168 см²
угол ВМD=90°, так как угол ВМА=180°, а угол DМА=90°. Значит СВМD прямоугольник
ВМ=14, так как ВМ=СD по свойству прямоугольника по выше доказоному
Значит МА=25-14=11. Тогда угол МАD=180°-90°-45°=45°. Значит треугольник МАD - равнобедренный, а так же прямоугольный, так как угол MAD=90°.
Следовательно MD=11
Найдём S:
S=(14+25):2*11=19.5*11=214.5
Ответ: S=214.5
(х+х-5)*2=52
2х=31
х=15,5одна сторона
15,5-5=10,5 вторая меньшая сторона