Если острый угол 60 градусов, то тупой угол будет равен (360-2*60)/2=120 градусов
Проведём диагональ из тупого угла. Тупой угол разделиться пополами будет равен 60 градусов
Получим равностронний треугольник. Высота, опущенная из тупого угла будет являться медианой для треугольника, значит сторону разделит на 2 равные отрезка по 20/2=10
1. Формула для вычисления объема усеченной пирамиды:
V=(1/3)*h*(S1+S2+√(S1*S2)), где h - высота этой пирамиды, а S1 и S2 - площади ее оснований.
В нашем случае пирамида правильная, следовательно ее основания - квадраты. Диагонали этих квадратов даны 4√2см и 2√2см. Значит стороны квадратов равны соответственно 4см и 2см., а их площади равны 16 см² и 4 см².
Тогда V=(1/3)*6*(16+4+√(16*4)) = 2*28 = 56см³.
2. Определение: "Коэффициент подобия - это отношение расстояний между любыми двумя соответствующими парами точек при преобразовании подобия". Следовательно, это число равно отношению любых двух соответствующих линейных размеров подобных тел. У подобных пирамид основания подобны и их отношение равно квадрату коэффициента подобия. В нашем случае коэффициент подобия данных нам пирамид равен k=√(S1/S2). Или k=√(20/45)=√(4/9) = 2/3.
Тогда отношение объемов этих пирамид равно k³ или
V1/V2 = 8/27.
D1=10, d2=16
S=d1*d2/2
S=10*16/2=80
Продлим BD за точку D до пересечения с окружностью в точке Е. Т.к. прямая AO содержит диаметр, а BE ей перпендикулярна, то треугольник ABE - равнобедренный. Значит ∠ABE=∠AEB. Кроме того, ∠AEB=∠ACB, как вписанные в окружность, поэтому ∠ABE=∠ACB. Значит треугольники ABD и ACB подобны по двум углам (∠ABD=∠ACB и ∠BAC - общий). Таким образом, AB/AC=AD/AB, т.е. 40/64=(64-DC)/40, откуда DС=39.