<span>x-4x<0
-3x</span><0
3x>0
x>0
Ответ : (0; +∞)
Решение в приложении:
P.s. четвертое всегда положительное число
D=25-4*2*(-12)=25+96=121
x1=(-5+11)/2*2=6/4=1,5
x2=(-5-11)/2*2=-16/4=-4
Ответ: (-∞;-4)∪(1,5;+∞)
5*x-5*3-2*(6-x)=-34
5x-15-2*(6-x)=-34
5x-15-(2*6-2*x)=-34
5x-15-(2*6-2*x)=-34
5x-15-(12-2x)=-34
5x-15-12+2x=-34
7x-15-12=-34
7x-27+-34
7x+-34+27
7x=_7
x=-7:7
x=-1
Sin4x - cos^4x - sin^4x = 0
sin^2x + cos^2x = 1 ----> sin^4x + 2sin^2xcos^2x + cos^4x = 1 ---->
----> -sin^4x - cos^4x = 1/2sin^2 2x - 1 = 1/2sin^2 2x - sin^2 2x - cos^2 2x
2sin 2x *cos 2x - 1/2sin^2 2x - cos^2 2x = 0 Умножим на (-2/сos^2 2x)
tg^2 2x - 4tg 2x + 2 = 0
Заменим tg2x = z, tg^2 2x = z^2
z^2 - 4z + 2 = 0
D = b^2 - 4ac = (-4)^2 -4*2 = 16 - 8 = 8>0
z_1 = (-b + VD)/2a = (4 + V8)/2 = 2 + V2
z_2 = (-b - VD)/2a = 2 - V2
1) tg2x = 2 - V2, 2x = arctg(2 - V2) + pin, x_1 = arctg(2 - V2)/2 + pin/2
2) tg2x = 2 + V2, 2x = arctg(2 + V2) + pin x_2 = arctg(2 + V2)/2 + pin/2