<span>Рассмотрим треугольники АВД и ВСД, они подобны по 3-му признаку, потому что их стороны пропорциональны, отношение АД:ВС=АВ:ВД=ВД:СД. Действительно 6:8=9:12=12:16=0,75. В подобных треугольниках углы, лежащие против сходственных сторон, равны. Т.е. угол АВД=углу ВДС, а это накрест лежащие углы при прямых АВ и СД и секущей ВД. Значит Прямые АВ и СД - параллельны. Поэтому четырехугольник АВСД - трапеция,с основаниями АВ и и СД.</span>
Ответ:
Сложи все стороны и вычти из 180
Объяснение:
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
1. ∠АВЕ = ∠CDE по условию, углы при вершине Е равны как вертикальные, ⇒ ΔАВЕ подобен ΔCDE по двум углам.
2. ∠САЕ = ∠KEF по условию, ∠АСЕ = ∠EKF = 90°, ⇒ ΔСАЕ подобен ΔKEF по двум углам.
3. ∠ВАС = ∠ВРК по условию, угол В общий, ⇒ ΔВАС подобен ΔВРК по двум углам.
4. ΔАВС равнобедренный, угол при вершине 36°, значит углы при основании: (180° - 36°)/2 = 72°.
В ΔDAC ∠DCA = 72°, а ∠DAC = BAC/2 = 36°, ⇒ ΔABC подобен ΔDAC по двум углам.
5. ∠ВАС = ∠BDE по условию, угол при вершине В общий, ⇒ ΔВАС подобен ΔBDE по двум углам.
6. ∠АСВ = ∠DEB = 90°, угол при вершине В общий, ⇒ ΔАСВ подобен ΔDEB по двум углам.
Решение:
∠3=∠1=40°- как вертикальные
∠2=90-∠3=90-40=50°
∠4=90, так как а⊥в
Ответ: ∠2=50°, ∠3=40°, ∠4=90°
<span>Диаметр 20 высота естественно 6</span>
<span>
</span>