<span>(x+1)^3+(x-1)^3 = x^3 + 3x^2 + 3x +1 +x^3 - 3x^2 + 3x -1 = 2*(x^3+3x)
(x^3+3x) / 2(x^3+3x) = 1/2 константа не зависит от х</span>
2x+6-x^2-3x=5x+x^2
6=5x+x^2-2x+x^2+3x
6=8x+2x^2
Не хрень какая-то
1) 11/5*2*3=13,2
2)12/3=4
3)31/2=15,5
4)4*15,5=62
5)13,2-62=-48,8
Cos 80=0,17364817766673
cos 40=0,766044443118978
sin 40 =0,642787609686539
0,766044443118978+0,642787609686539=1,40883205280552
0,17364817766673/1,40883205280552≈0,123256833432438
(x+5)⁴-13x²(x+5)²+36x⁴=0
Для возведения в степерь воспользуемся биноминальной формулой
x⁴+20x³+150x²+500x+625-13x⁴+130x³+325x²+36x⁴=0
24x⁴-110x³-175x²+500x+625=0
Разложим одночлены в сумму нескольких
24x⁴-110x³-275x²+100x²+500x+625=0
24x⁴-110x²(x+2.5)+100(x+2.5)²=0
Пусть x²=A, x+2.5=B, в результате
24A²-110AB+100B²=0
24A²-80AB-30AB+100B²=0
8A(3A-10B)-10B(3A-10B)=0
(3A-10B)(8A-10B)=0
Возвращаемся к замене
(3x²-10(x+2.5))(8x²-10(x+2.5))=0
(3x²-10x-25)(8x²-10x-25)=0
Два уравнения
3x²-10x-25=0
D=b²-4ac=100+300=400
x₁=-5/3
x₂=5
8x²-10x-25=0
D=100+32*25=900
x₃=-1.25
x₄=2.5
Ответ: -5/3; -1.25; 2.5; 5.
2(x-1)⁴-5(x²-3x+2)²+2(x-2)⁴=0
Биноминальна формула
Раскроем скобки по формуле
2x⁴-8x³+12x²-8x+2-5x⁴+30x³-65x²+60x-20+2x⁴-16x³+48x²-64x+32=0
x⁴-6x³+5x²+12x-14=0
Пусть x²-3x=t, в результате замены переменных получаем уравнение
t²-4t-14=0
D=b²-4ac=16+4*14=72
t₁=2-3√2
t₂=2+3√2
Вовзращаемся к замене
x²-3x=2-3√2
x²-3x-(2-3√2)=0
D=17-12√2; √D=3-2√2
x₁=√2
x₂=3-√2
x²-3x=2+3√2
x²-3x-(2+3√2)=0
D=17+12√2; √D=3+2√2
x₃=-√2
x₄=3+√2
Ответ: ±√2; 3±√2.