<span>Каждый член этой последовательности, начиная со второго, получается умножением предыдущего члена на 2. Эта последовательность является примером геометрической прогрессии.</span>Определение. <u>Геометрической прогрессией</u> называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.<span>Иначе говоря, (<span>bn</span>) - геометрическая последовательность и <span>bn</span>≠0, то</span><span><span>bn</span>+1=<span>bn</span><span>∙q,</span></span><span>где q - некоторое число.</span>В нашей последовательности степеней числа 2<span><span>q =2 и </span><span>bn</span>+1=<span>bn</span>∙2.</span><span>Из определения геометрической прогрессии следует, что отношение любого её члена, начиная со второго, к предыдущему члену равно q.</span><span><span>bn</span>+1/<span>bn</span> = q</span><span>Число q называют знаменателем геометрической прогрессии.</span>ПРИМЕРЫ.<span><span>1. Если </span>b1= 1 и <span>q = 0,1, то получим Г.П.</span></span>1; 0,1; 0,01; 0,001; ...<span><span>2. Если </span>b1=-5 и <span>q = 2, то Г.П. получится следующая</span></span>-5; -10; -20; -40; ...Зная первый член и знаменатель Г.П., можно найти любой член последовательности:<span>b2=b1<span>∙q</span></span><span>b3=b2<span>∙q=</span>b1<span>∙q2</span></span><span>b4=b3<span>∙q=</span>b1<span>∙q3</span></span><span>b5=b4<span>∙q=</span>b1<span>∙q4 ...</span></span><span><span>bn</span>=b1<span>∙<span>qn-1</span> (*)</span></span><span>Мы получили формулу n-го члена геометрической прогрессии.</span>Приведем примеры решения задач с использованием этой формулы.<span>Задача 1. В Г.П. b1=12,8 и <span>q=1/4. Найдем </span>b7.</span><span>Решение: b7=b1<span>∙q6=12,8∙(1/4)6=(этапы решения)=1/320.</span></span><span><span>Задача 2. Найдем восьмой член Г.П. (</span><span>bn</span>), если b1=162 и b3=18.</span><span><u>Решение:</u> испол
</span>
Не знаю, верно ли поняла, добавлю ответ.
////////////
2√6 и 4√2
Чтобы перенести цифру слева от знака корня направо, нужно возвести это число в квадрат и умножить на число справа:
2 Возводим в квадрат: 2*2=4
Умножаем на 6: 4*6=24
То же самое делаем со вторым выражением:
4*4=16
16*2=32
Получаем √24 и √32
Теперь мы можешь сравнить эти числа
√32>√24
Ответ: 2√6<4√2
Мы находили,за сколько дней Катя,печатающая быстрее,выполнит курсовую размером в 60%.
Второе действие - мы пропорцией,исходя из Катиной производительности,нашли её работу за 10 дней.
НО можно сделать так:
0,6\6=0,1 курсовой в день. 1:0,1 = 10 дней
(А\P=T)