для описанного четырехугольника справедливо утверждение
суммы противоположных сторон равны
пусть ABCD - данный описанный четырехугольник
r- радиус вписанной окружности
тогда AB+CD=AC+BD=24
r=5
Площадь четырехугольника (как сумма четырех соответсвенно треугольников) равна
S=1/2*r*(AB+BC+CD+AD)=1/2*5*(24+24)=120
ответ: 120
Хорошая задача, заставляющая тряхнуть стариной и вспомнить некоторые трюки, полезные при работе с трапецией.
Трапеция ABCD; AD - большее основание, внизу; BC - меньшее основание, наверху. Перенесем диагональ BD на величину верхнего основания. Другими словами, через точку С проводим прямую, параллельную BD, до пересечения с продолжением AD в точке E. Получился равнобедренный треугольник ACE с боковыми сторонами, равными диагоналям трапеции, то есть AC=CE=50; при этом основание треугольника равно сумме оснований трапеции, то есть удвоенной средней линии; AE=96.
Расстояние между основаниями трапеции равно высоте этого треугольника, найдем ее. Поскольку высота CF равнобедренного треугольника ACE, опущенная на его основание, является также медианой, можем найти CF из прямоугольного треугольника ACF с помощью теоремы Пифагора:
CF^2=AC^2-AF^2=50^2-48^2=4(25^2-24^2)=
4(25-24)(25+24)=4·49=(14)^2⇒CF=14
Замечание. Многие наряду с самым известным прямоугольным треугольником с целыми сторонами (египетским: 3-4-5) знают и несколько других, одним из них является треугольник 7-24-25, стороны которого в 2 раза меньше сторон нашего. Заметив это, можно было избежать применение теоремы Пифагора (впрочем, не знаю, что сказала бы на этот счет Ваша учительница)
Трапеция АВСД, АД параллельна ВС, АВ - боковая сторона, секущая При пересечении двух параллельных прямых третьей сумма внутренних односторонних углов=180, уголА+уголВ=180
Тут сразу много надо знать мелких вещей.
Если основания a и b, то (a + b)/2 =25 - это задано.
Далее, отрезки средней линии между диагональю и боковой стороной оба равны b/2 как средние линии с треугольниках с основанием b (Это АВС и DBC)
Поэтому (a - b)/2 = 5; отсюда a = 30; b =20;
Легко увидеть по соотношению сторон a и b: b/a = 2/3, поэтому ВМ = 2/3 АМ, откуда ВМ = 12; аналогично СМ = 16;
Треугольник ВМС имеет стороны 12, 16, 20 то есть это "египетский" треугольник (простейший Пифагоров треугольник, подобный треугольнику со сторонами 3,4,5)
Поэтому мы просто применяем формулу для радиуса окружности, вписанной в прямоугольный треугольник
r = (12 + 16 - 20)/2 = 4
------------------------------------------------------------